材力-公式篇

  • \(\frac{1}{\rho}=\frac{M}{EI}\)

  • 主应力:\(\sigma=\frac{My}{I_z}\)

  • 切应力:\(\tau=\frac{F_s S_z^*}{b I_z}\)

    • 矩形:\(\tau=\frac{3}{2}\frac{F_s}{bh}\);
    • 圆形:\(\tau=\frac{4}{3}\frac{F_s}{A}\);
    • 圆筒:\(\tau=2\frac{F_s}{A},A=2\pi r\delta_0\);

截面几何性质(Properties of plane areas)

静矩和形心(The first moments of area & Centroid of an area)

极惯性矩 惯性矩 惯性积(Polar moment of inertia Moment of inertia Product of inertia)

平行移轴公式(Parallel-Axis theorem)

常用

\[\begin{align} I_{\rho}&=\frac{\pi d^4}{32}=\frac{\pi r^4}{2}\\ I_{z}&=\frac{\pi d^4}{64}=\frac{\pi r^4}{4}\\ W&=\frac{i}{y_{max}} \end{align}\]

  1. 矩形 \[\begin{align} I_{z}=\frac{bh^3}{12}\\ W=\frac{bh^2}{6} \end{align}\]

转动相关

转轴公式(Rotation of axes)

方向:逆时针转为正

\[\begin{align} I_y'&=\frac{I_y+I_z}{2}+\frac{I_y-I_z}{2}cos2\alpha-I_{yz}sin2\alpha\\ I_z'&=\frac{I_y+I_z}{2}-\frac{I_y-I_z}{2}cos2\alpha+I_{yz}sin2\alpha\\ 有I_y'+I_z'&=I_y+I_z \end{align}\]

\[\begin{align} I_{yz}'=\frac{I_y-I_z}{2}sin2\alpha+I_{yz}cos2\alpha\\ \end{align}\]

  • 主惯性轴(Principal axes)令\(I_{yz}=0\)
  • 主惯性矩(Principal moment of inertia)
  • 形心主惯性轴(centroidal principal axes)
  • 形心主惯性矩(centroidal principal moment of inertia) \[\begin{align} tg2\alpha_0&=\frac{-2I_{yz}}{I_{y}-Iz}\\ I_{y.or.z}&=\frac{I_y+I_z}{2}\pm\sqrt{(\frac{I_y-I_z}{2})^2+I_{yz}^2} \end{align}\] > \(I_{y.or.z}\)一个为\(max\)一个\(min\)

应力公式

方向:逆时针转为正

$$\[\begin{align} \sigma_{\alpha}'&=\frac{\sigma_x+\sigma_y}{2}+\frac{\sigma_x-\sigma_y}{2}cos2\alpha-\sigma_{yz}sin2\alpha\\ \end{align}\]$$

\(\sigma_x'+\sigma_y'=\sigma_x+\sigma_y\) 应力不变量

一个点上相互垂直的面的正应力之和是定值

\[\begin{align} \tau_{\alpha}'=\frac{\sigma_x-\sigma_y}{2}sin2\alpha+\tau_{xy}cos2\alpha\\ \end{align}\]

\[\begin{align} tg2\alpha_0&=\frac{-2\tau_{xy}}{\sigma_{y}-\sigma_y}\\ \sigma_{y.or.z}&=\frac{\sigma_x+\sigma_y}{2}\pm\sqrt{(\frac{\sigma_x-\sigma_y}{2})^2+\tau_{xy}^2} \end{align}\] > \(I_{y.or.z}\)一个为\(max\)一个\(min\)

应变公式

方向:逆时针转为正

$$\[\begin{align} \varepsilon_{\alpha}'&=\frac{\varepsilon_x+\varepsilon_y}{2}+\frac{\varepsilon_x-\varepsilon_y}{2}cos2\alpha-\frac{\gamma_{xy}}{2}sin2\alpha\\ \end{align}\]$$

\[\begin{align} \tau_{\alpha}'=\frac{\varepsilon_x-\varepsilon_y}{2}sin2\alpha+\frac{\gamma_{xy}}{2}cos2\alpha\\ \end{align}\]

\[\begin{align} tg2\alpha_0&=\frac{-2\frac{\gamma_{xy}}{2}}{\varepsilon_{y}-\varepsilon_y}\\ \varepsilon_{y.or.z}&=\frac{\varepsilon_x+\varepsilon_y}{2}\pm\sqrt{(\frac{\varepsilon_x-\varepsilon_y}{2})^2+\frac{\gamma_{xy}}{2}^2} \end{align}\]


广义胡克定律

\[\begin{align*} \varepsilon_x&=\frac{1}{E}\left[\sigma_x-\mu(\sigma_y+\sigma_z)\right]\\ \varepsilon_y&=\frac{1}{E}\left[\sigma_y-\mu(\sigma_z+\sigma_x)\right]\\ \varepsilon_z&=\frac{1}{E}\left[\sigma_z-\mu(\sigma_x+\sigma_y)\right] \end{align*}\]

体应变:

\[\begin{align*} \theta&=\varepsilon_x+\varepsilon_y+\varepsilon_z=\frac{1-2\mu}{E}(\sigma_x+\sigma_y+\sigma_z)=\frac{\sigma_m}{K} \\ \text{其中}K&=\frac{E}{3(1-2\mu)} \end{align*}\]

弯曲应力

纯弯曲Pure bending

无剪力只有弯矩

假设

  • 平面假设,横截面仍为平面
  • 单向受力假设,纵向纤维不相互挤压

\[\begin{align} \varepsilon&=\frac{y}{\rho}\\ \sigma&=E\varepsilon=E\frac{y}{\rho} \end{align}\]

那么中性轴在哪?\(\rho\)是多少?

\(F_N=\int_A E\frac{y}{\rho}dA=0\)\得到中性轴在形心(Centroid of an area)上

立即得\(M_{iy}=\int_A zE\frac{y}{\rho}dA=0\)

\(M_{iz}=\int_A yE\frac{y}{\rho}dA=M\)得到

\[\begin{align} \frac{1}{\rho}=\frac{M}{EI_z}\\ 有\sigma=E\frac{y}{\rho}=\frac{My}{I_z} \end{align}\]

横力弯曲时的正应力(Normal stresses of the beam in nonuniform bending)

\[\begin{align} \sigma&=\frac{M}{W}\\ W&=\frac{I_z}{y_{max}} \end{align}\]

The applicable range of the flexure formula

  1. All stresses in the beam are below proportional limit
  2. The beam with the shear stress
  3. Plane bending
  4. Straight beams

10.24待补充

弯曲变形(Deflection of beams)

Basic concepts

  1. Deflection 挠度
  2. Slope 转角
  3. Deflection curve 挠曲线
  4. Relationship between deflection and slope:

\(\theta\approx tan\theta=\omega'\)

  1. Sign convention for deflection and slope

挠度向上为正

转角自x转至切线,逆时针为正

Differential equation of the deflection curve

\(\frac{1}{\rho}=\frac{M}{EI}\)

\(\frac{1}{\rho}=\frac{\left|\omega''\right|}{(1+\omega'^2)^{\frac{3}{2}}}\)

\(\omega'^2\)略去

\[\begin{align} EI\omega''=M \end{align}\]

Beam deflection by integration

  • The first integration gives the equation for the slope;

  • Integrating again the equation for the deflection.

  • Evaluating the constants of integration

    1. Boundary conditions
    2. Continue conditions

简支梁不管受什么载荷,最大挠度值都可以用中点处值

Superposition

  1. 载荷叠加(superposition of loads)
  2. 逐段钢化 有外伸梁时用

经典载荷变形(P195)

能量法

互等定理

互等定理
互等定理

卡氏定理

无中生有
卡氏定理

莫尔定理

莫尔
莫尔图乘

材力-公式篇
http://example.com/2022/10/26/M_equation/
作者
Alpha
发布于
2022年10月26日
许可协议