材力笔记
绪论
- 研究对象:强度、刚度、稳定性
- 连续性假设、均匀性假设、各向同性假设
外力分类
- 静载荷、动载荷
- 应力
基本概念
- Strain \[\begin{align} \varepsilon=\lim_{\Delta x\rightarrow0}\frac{\Delta s}{\Delta x} \end{align} \]
- 切应变 \[\begin{align} \gamma=\lim_{ML、MN\rightarrow0}(\frac{\pi}{2}-\angle L'M'N') \end{align}\]
- 名义应力(工程应力)
- 真实应力
拉伸、压缩
Method of sections
Sign convention for axial force
- Tensile force
- Compressive force
Deformation phenomenon
Plane assumption
弹性模量 modulus of elasticity \[\begin{align}E=\frac{\sigma}{\varepsilon} \end{align}\]
Formula for normal stress \[\begin{align}\sigma=\frac{F_N}{A} \end{align}\]
Stress on an inclined plane Mechanical properties of materials in axial tension and compression
Tension diagram
Stress-strain diagram
塑形材料 Ductile material \(\delta \geq5\%\)
冷却硬化
- Elastic strain\(\varepsilon_e\)
- Plastic strain\(\varepsilon_p\)
脆性材料 Brittle material \(\delta <5\%\)
比例极限 Proportional limit \(\sigma_p\)
卸载定律 Unloading law yielding
屈服极限 Yielding Strength \(\sigma_s\)
hardening
- 强度极限 Ultimate Strength \(\sigma_b\)
necking
- 伸长率 Percent elongation
- 断面收缩率 Percent reduction in area
- 蠕变 creeping&relaxation
Axial deformation
\[\begin{align}
\Delta l=\frac{F_Nl}{EA}
\end{align}\] \(E\) is the
modulus of elasticity
And we call \(EA\)
rigidity - Poisson's
ratio \[\begin{align}
\mu=-\frac{\varepsilon'}{\varepsilon}
\end
{align}\] \(\varepsilon'\)
is Lateral strain
Allowable stress\(\left[ \sigma \right]\)
\(\left[ \sigma \right]=\frac{\sigma_u}{n}\)
\(n\) is factor of safety理论应力集中因数 Stress concentration factor \[\begin{align}\kappa=\frac{\sigma_{max}}{\sigma}\end{align}\]
应变能 \[\begin{align}V&=W=\frac{1}{2}F\Delta l\\&=\frac{F^2l}{2EA} \end{align}\] 多用于难以找几何条件的题目
超静定
- 列变形协调方程 温度应力和装配应力