材力-概念篇

绪论

  • 研究对象:强度、刚度、稳定性

  • 连续性假设、均匀性假设、各向同性假设 ## 外力分类

  • 静载荷、动载荷

  • 应力 ## 基本概念

  • Strain \[\begin{align} \varepsilon=\lim_{\Delta x\rightarrow0}\frac{\Delta s}{\Delta x} \end{align} \]

  • 切应变 \[\begin{align} \gamma=\lim_{ML、MN\rightarrow0}(\frac{\pi}{2}-\angle L'M'N') \end{align}\]

  • 名义应力(工程应力)

  • 真实应力 # 拉伸、压缩 ## Method of sections Sign convention for axial force

  • Tensile force

  • Compressive force Deformation phenomenon

  • Plane assumption

  • 弹性模量 modulus of elasticity \[\begin{align}E=\frac{\sigma}{\varepsilon} \end{align}\] Axial force diagram

  • Formula for normal stress \[\begin{align}\sigma=\frac{F_N}{A} \end{align}\]

  • Stress on an inclined plane Mechanical properties of materials in axial tension and compression

  • Tension diagram

  • Stress-strain diagram

  • 塑形材料 Ductile material \(\delta \geq5\%\)

  • 冷却硬化

    • Elastic strain\(\varepsilon_e\)
    • Plastic strain\(\varepsilon_p\)
  • 脆性材料 Brittle material \(\delta <5\%\)

  • 比例极限 Proportional limit \(\sigma_p\)

  • 卸载定律 Unloading law yielding

  • 屈服极限 Yielding Strength \(\sigma_s\)

hardening - 强度极限 Ultimate Strength \(\sigma_b\)

necking - 伸长率 Percent elongation - 断面收缩率 Percent reduction in area

蠕变 creeping&relaxation

Axial deformation \[\begin{align} \Delta l=\frac{F_Nl}{EA} \end{align}\] \(E\)is the modulus of elasticity
And we call\(EA\)rigidity - Poisson's ratio \[\begin{align} \mu=-\frac{\varepsilon'}{\varepsilon} \end {align}\] \(\varepsilon'\) is Lateral strain - Allowable stress\(\left[ \sigma \right]\)
\(\left[ \sigma \right]=\frac{\sigma_u}{n}\)
\(n\)is factor of safety - 理论应力集中因数 Stress concentration factor \[\begin{align}\kappa=\frac{\sigma_{max}}{\sigma}\end{align}\] - 应变能 \[\begin{align}V&=W=\frac{1}{2}F\Delta l\\&=\frac{F^2l}{2EA} \end{align}\] 多用于难以找几何条件的题目

超静定

  • 列变形协调方程 温度应力和装配应力

钢架的内力(Internal force)方向

平面刚杆(Plane frame members)

  1. 剪力(shear force) > 任一侧,注明正负
  2. 弯矩(bending moment) > 受压侧
  3. 轴力(axial force) > 任一侧

平面曲杆(Plane curved bars)

  1. 剪力(shear force) > 对任一点取矩,顺时针为正
  2. 弯矩(bending moment) > 使曲率增加即为正
  3. 轴力(axial force) > 引起拉伸

材力-概念篇
http://example.com/2022/10/08/Meterial Mechanics/
作者
Alpha
发布于
2022年10月8日
许可协议