材力-概念篇
绪论
研究对象:强度、刚度、稳定性
连续性假设、均匀性假设、各向同性假设 ## 外力分类
静载荷、动载荷
应力 ## 基本概念
Strain \[\begin{align} \varepsilon=\lim_{\Delta x\rightarrow0}\frac{\Delta s}{\Delta x} \end{align} \]
切应变 \[\begin{align} \gamma=\lim_{ML、MN\rightarrow0}(\frac{\pi}{2}-\angle L'M'N') \end{align}\]
名义应力(工程应力)
真实应力 # 拉伸、压缩 ## Method of sections Sign convention for axial force
Tensile force
Compressive force Deformation phenomenon
Plane assumption
弹性模量 modulus of elasticity \[\begin{align}E=\frac{\sigma}{\varepsilon} \end{align}\] Axial force diagram
Formula for normal stress \[\begin{align}\sigma=\frac{F_N}{A} \end{align}\]
Stress on an inclined plane Mechanical properties of materials in axial tension and compression
Tension diagram
Stress-strain diagram
塑形材料 Ductile material \(\delta \geq5\%\)
冷却硬化
- Elastic strain\(\varepsilon_e\)
- Plastic strain\(\varepsilon_p\)
脆性材料 Brittle material \(\delta <5\%\)
比例极限 Proportional limit \(\sigma_p\)
卸载定律 Unloading law yielding
屈服极限 Yielding Strength \(\sigma_s\)
hardening - 强度极限 Ultimate Strength \(\sigma_b\)
necking - 伸长率 Percent elongation - 断面收缩率 Percent reduction in area
蠕变 creeping&relaxation
Axial deformation \[\begin{align}
\Delta l=\frac{F_Nl}{EA}
\end{align}\] \(E\)is the
modulus of elasticity
And we call\(EA\)rigidity - Poisson's
ratio \[\begin{align}
\mu=-\frac{\varepsilon'}{\varepsilon}
\end
{align}\] \(\varepsilon'\)
is Lateral strain - Allowable stress\(\left[
\sigma \right]\)
\(\left[ \sigma
\right]=\frac{\sigma_u}{n}\)
\(n\)is factor of safety -
理论应力集中因数 Stress concentration factor \[\begin{align}\kappa=\frac{\sigma_{max}}{\sigma}\end{align}\]
- 应变能 \[\begin{align}V&=W=\frac{1}{2}F\Delta
l\\&=\frac{F^2l}{2EA}
\end{align}\] 多用于难以找几何条件的题目
超静定
- 列变形协调方程 温度应力和装配应力
钢架的内力(Internal force)方向
平面刚杆(Plane frame members)
- 剪力(shear force) > 任一侧,注明正负
- 弯矩(bending moment) > 受压侧
- 轴力(axial force) > 任一侧
平面曲杆(Plane curved bars)
- 剪力(shear force) > 对任一点取矩,顺时针为正
- 弯矩(bending moment) > 使曲率增加即为正
- 轴力(axial force) > 引起拉伸